Monday, August 9, 2010

Saturn Aurora


These images reveal the dynamic nature of Saturn's auroras. Viewing the planet's southern polar region for several days, NASA's Hubble Space Telescope snapped a series of photographs of the aurora dancing in the sky. The snapshots show that Saturn's auroras differ in character from day to day, as they do on Earth, moving around on some days and remaining stationary on others. But compared with Earth, where auroral storms develop in about 10 minutes and may last for a few hours, Saturn's auroral displays always appear bright and may last for several days.
The observations, made by Hubble and the Cassini spacecraft, while enroute to the planet, suggest that Saturn's auroral storms are driven mainly by the pressure of the solar wind — a stream of charged particles from the Sun — rather than by the Sun's magnetic field.

The aurora's strong brightening on Jan. 28, 2004 corresponds with the recent arrival of a large disturbance in the solar wind. The image shows that when Saturn's auroras become brighter (and thus more powerful), the ring of light encircling the pole shrinks in diameter.

Seen from space, an aurora appears as a ring of glowing gases circling a planet's polar region. Auroral displays are initiated when charged particles in space collide with a planet's magnetic field. The charged particles are accelerated to high energies and stream into the upper atmosphere. Collisions with the gases in the planet's atmosphere produce flashes of glowing energy in the form of visible, ultraviolet, and infrared light.

No comments:

Post a Comment